Smith Charts and More

Sponsored by the Chelsea Amateur Radio Club (WD8IEL).

Wesley Cardone, N8QM (n8qm@arrl.net)

November 8, 2022

Cook Books

Strategic Overall Class Objectives

- Prepare for the FCC upgrade license exams efficiently.
- Have fun learning what you thought was a stumbling block.
- Use SimSmith—A Practical Example
- Center lessons on explicit FCC pool questions.

Tonight…

- We will fully review what was covered last week.
- We want to look at polar coordinates.
- But first we need to back up a little.
- We will review what impedance is all about using the Chelsea repeater as an example.
- Then examine impedance via
 - Rectangular coordinates
 - The Smith Chart
- Eventually we will tie this all back to the Smith Chart and you will then recognize the massive value the Smith Chart adds to simplicity.

The Chelsea Repeater

 On June of 2022 we measured a vector impedance that the transmitter was looking into at 145.450 MHz of

- f = 145.45 MHz
- R = 36.9 Ω
- $X = 1.10 \Omega$
- Z = 36.9 Ω

range+

reat

frea-

The Chelsea Repeater

- What do R, X and Z mean at f?
 - Frequency (f) = 145.450 MHz
 - Resistance (R) has no polarity and is independent of f.
 - Reactance (X) has a polarity
 - Minus (-) is CAPACITIVE reactance
 - Plus (+) is INDUCTIVE reactance-(+1.10 Ω)
 - X together with f defines a capacitance or inductance because X depends on f.
 - $L = \frac{X}{2\pi f} = \frac{1.1\Omega}{2\pi 145.45MHz} = 1.20nH$
 - Magnitude Impedance (Z) is

Impedance Represented Rectangular

• Horizontal is Resistance

- All values positive
- To the right of X is greater than unity (i.e. 1.01, 10.345, etc.)
- To the left of X is less than unity (i.e. 0.99, 0.12, etc.)
- Vertical is Reactance
 - Plus is inductive
 - Minus is capacitive
- Special Observation: Where is the equivalent of the Smith Chart's "home plate?"

Impedance Represented Rectangular

- The illustration is not necessarily to scale.
- Has two (2) components
 - Real
 - imaginary
- First, normalize measurement
 - 36.9/50 = 0.74
 - 1.1/50 = 0.022
- 0.74 Ohms is less than unity
- 0.022 Ohms is positive

Z-Magnitude Impedance

- The magnitude impedance (Z) is something like "...the distance as the crow flies."
- $Z = \sqrt{R^2 + X^2}$
- $Z = \sqrt{0.740^2 + 0.022^2}$ • Z = 0.738 Ohms

Now…a peak at the angle

- This is another way of saying the same thing but useful for some applications.
- We looked at the vector components

 - 0.022 real (normalized)
 0.740 imaginary (normalized)
- Because we have a vector component...
 - There is a Z, the distance as the crow flies for a "magnitude."
 - That magnitude has an angle from the real.

The Hard Way…

Another Way to say the same…

- Invoke our good friend Mr. Pythagoras doesn't change.
 Z = √R² + X²
- Let's skip the trig on this one.
- It gets even more complicated so I think the Smith Chart is our best bet.

Smith Chart Review

- Hemispherical Reactances
 - Inductive are in the northern hemisphere
 - Capacitive in the southern
- Points directly on the equator are real with zero value reactances.
- The circle
 - Where the circle appears is irrelevant in theory.
 - 360° represents a half-wave

SMITH CHAR

Polar on Smith

Similar to rectangular

• But new information gained.

Ca

• The angle can be from

- The outside or
- From the inside
- The same angle but from different perspectives.

FCC Pool Question E5A02

What is resonance in an LC or RLC circuit

- The highest frequency that will pass current
- The lowest frequency that will pass current
- The frequency at which the capacitive reactance equals the inductive reactance.
- The frequency at which the reactive impedance equals the resistive impedance.
- This is a critical element of antenna analysis
 - The antenna is resonant when the reactance is neutral
 - The capacitive reactance equals the inductive reactance.

FCC Pool Question E5A03

What is the magnitude of the impedance of a series RLC circuit at resonance?

- High, as compared to the circuit resistance
- Approximately equal to capacitive reactance
- Approximately equal to the inductive reactance
- Approximately equal to the circuit resistance
- Why?
- At resonance reactance
 - Is neutral
 - Capacitive and Inductive reactances cancel each other
 - Therefore, there is no travel along the vertical axis and
 - There is only resistive impedance

FCC Pool Question E5A04

- What is the magnitude of the impedance of a parallel RLC circuit at resonance?
 - Approximately equal to the circuit resistance
 - Approximately equal to the inductive reactance
 - Low compared to the circuit resistance
 - High compared to the circuit resistance
- No matter whether series of parallel, at resonance, reactance is neutral, capacitive and inductive canceling each other.
- Only a resistive component is left.

FCC Pool Question E5B12

What is admittance

- The inverse of impedance
- The term for the gain of a field effect transistor
- The turns ratio of a transformer
- The inverse of Q factor
- Hints to use if you don't remember while taking the test
 - You are going to have to remember that admittance has something to do with or is related to impedances.

- Therefore
 - A field effector transistor answer is out of the question leaving 1, 3 & 4.
 - A transformer is disqualified leaving only 1 & 4.
 - You will likely recall that admittance is the inverse of something making the last elimination tough. You will have to remember that Q is not an impedance thing.

FCC Pool Question E5C01

- Which of the following represents capacitive reactance in rectangular notation
 - -jX
 - +jX
 - Delta
 - Omega
- Rule out 3 & 4, those are gibberish answers leaving only 1 & 2.
- Nos 1 & 2 are both viable answers as far as relevance is concerned.
- Is easy to forget which is which
- Recall that +X (northern hemisphere) is inductive
- Therefore, -X is capacitive reactance.

FCC Pool Question E5C03

• What coordinate system is often used to display the resistive, inductive, and/or capacitive reactance components of impedance?

- Maidenhead grid
- Faraday grid
- Elliptical coordinates
- Rectangular coordinates
- A Maidenhead grid is for a global grid square locator map eliminating No 1 and Faraday grid is just plain gibberish eliminating No 2.
- Elliptical coordinates are unheard of so eliminate No 3...
- ...leaving No 4.

FCC Pool Question E5C06

• What does the impedance 50 – j25 represent?

- 50 Ohms resistance in series with 25 Ohms inductive reactance
- 50 Ohms resistance in series with 25 Ohms capacitive reactance
- 25 Ohms resistance in series with 50 Ohms inductive reactance
- 25 Ohms resistance in series with 50 Ohms capacitive reactance
- There are no non-sense answers here to eliminate
- You should immediately recognize the R +/- jX convention cluing you in to eliminating Nos 3 & 4 leaving only 1 & 2.
- You need to remember that minus (-) reactance is capacitive leaving you with No 2.

c.eone, Questions CE COMPONEN - WAVELENGTHS TOWARD GENERATON

INDUCTIVE R

e

INDUCTIV

0.47 8

00 0.0 2

NGTHS

100

0.48

escinve los

Y.A.

믕

 \simeq

--

15

0.15

23 120

> 0.24 020

72 10

NOLE OF TRANSMISSION COEFFICIENT IN DEGREES

10.

120

20

15

10.22

2.2

ANGLE OF REFLECTION COEFFICIENT IN DEGREES

ŝ 225

0.24 828

0.27