Smith Charts and More

Sponsored by the Chelsea Amateur Radio Club (WD8IEL).

Wesley Cardone, N8QM (n8qm@arrl.net)

January 31, 2023

Cook Books

Strategic Overall Class Objectives

- Prepare for the FCC upgrade license exams efficiently.
- Have fun learning what you thought was a stumbling block.
- Use SimSmith—A Practical Example
- Center lessons on explicit FCC pool questions.

What Are Vector Impedances

- A vector impedance is looking at two components as a single entity.
 - Resistive
 - This is your everyday resistor
 - Dissipates energy as heat
 - Has a Power rating--Watts

What Are Vector Impedances

• A vector impedance is looking at two components as a single entity.

- Resistive
 - This is your everyday resistor
 - Dissipates energy as heat
- Reactive
 - Stores energy
 - Therefore...has no power rating except parasitic.
 - Does not dissipate or consume energy
 - Has two forms
 - Capacitive
 - Inductive

Inductor	100 mH 159.15 Hz	Capacitor	10 μF 159.15 Hz
	$R = 0 \Omega$ $X = 100 \Omega$ $Z = 100 \Omega \swarrow 90^{\circ}$	R = X = Z =	= 0 Ω = 100 Ω = 100 Ω ∠ -90°

Capacitive Reactance

Capacitive Reactance

- Stores energy
 - Therefore...has no power rating except parasitic.
- Does not dissipate or consume energy
- But its reactance does block AC current flow
 - Reactance (X_c) measured in Ohms
- Dependent on frequency
 - At freq=DC is like an open— X_c = infinity
 - At freq=infinity— $X_c = 0$

X/c

Frequency

Ω's mps

Capacitor at and Beyond Resonance

Capacitors have parasitics

- Inductance
- Resistance
 - Series
 - Parallel
- Recall
 - X_c goes down with frequency
 - X_L goes UP with frequency
 - Do the two meet somewhere?
 - Is this called..."resonance?"

Capacitor at Resonance

• At DC

- X_c = infinity
- X_L = zero
- At frequency = infinity
 - X_c = zero
 - X_L = infinity
- What about in between?

FCC Pool Question E5A02

- What is resonance in an LC or RLC circuit?
- ANSWER:
 - The frequency at which the capacitive reactance equals the inductive reactance.

Inductive Reactance

Inductive Reactance

- Stores energy
 - Therefore...has no power rating except parasitic.
- Does not dissipate or consume energy
- But its reactance does block AC current flow
 - Reactance (X_L) measured in Ohms
- Dependent on frequency
 - At freq=DC is like a short— $X_L = 0$
 - At freq=infinity $-X_L$ = infinity

Inductor at and Beyond Resonance

Inductors have parasitics

- Capacitance
- Resistance
 - Series
 - Parallel
- Recall
 - X_c goes down with frequency
 - X_L goes UP with frequency
 - Do the two meet somewhere?
 - Is this called..."resonance?"

Inductor at Resonance

• At DC

- $X_c = infinity$
- X_L = zero
- At frequency = infinity
 - X_c = zero
 - X_L = infinity
- What about in between?

Putting Them Together

• Reactive

- Stores energy
 - Therefore...has no power rating except parasitic.
- Does not dissipate or consume energy
- Has two forms
 - Capacitive
 - Inductive

FCC Pool Question G6A11

- What happens when an inductor is operated above its self-resonant frequency?
- ANSWER:
 - It becomes capacitive

Reactive

 \geq

How Do We Represent Them?

c.eone, Questions CE COMPONEN - WAVELENGTHS TOWARD GENERATON

INDUCTIVE R

e

INDUCTIV

0.47 8

00 0.0 2

NGTHS

100

0.48

escinve los

Y.A.

믕

 \simeq

--

15

0.15

23 120

> 0.24 020

72 10

NOLE OF TRANSMISSION COEFFICIENT IN DEGREES

10.

120

20

15

10.22

2.2

ANGLE OF REFLECTION COEFFICIENT IN DEGREES

ŝ 225

0.24 828

0.27