Modeling the J-Pole Antenna A Deep Dive Presentation Wesley Cardone, N8QM

March 2024

Proposed:

- A J-Pole antenna will be modeled for computer simulation using the NEC antenna simulation engine developed by the Lawrence-Livermore Laboratory in the 1970s.
- We will be using the
 - EZNEC and
 - This application is particularly useful for presentations and beginners of antenna modeling.
 - 4NEC2 implementations of the NEC engine.
 - This application is more useful for the skilled NEC user owing to its symbology facilitation.
- Recommend that the viewer have reviewed the earlier "qualitative" presentation.
 - The basics of modeling the J-Pole for simulation.
- This will be a deep-dive into the actual modeling.
 - An Excel spreadsheet will be presented.
 - "Deep Dive" is not intended to mean "for rocket scientists only."
 - Nothing beyond what is expected of amateur extra class licensees will be presented.

Questions You Must Consider

- What is a computer antenna model?
 - An architecture of wires with stimulus
- What knowledge to you need?
 - Success in modeling and simulation can only be of value if you already know most of the answers.
 - You understand what the pieces are doing
 - Might not understand their workings together
- Why Model Antennas?
 - Apply changes to what you already know to be true
- What are must-haves
 - Objectives
 - What answers are sought?

Why Model the J-Pole Antenna?

- The workings of the J-Pole are fully understood.
- Value-Add
 - Little operational value can be gained by simulating a J-Pole antenna.
- Ideal subject matter for learning NEC modeling
 - We know what the J-Pole is supposed to be doing
 - Does our model reflect that?
 - If yes---you are learning.
 - If no—what have you missed.

Benefits of Antenna Modeling

- Can serve as a second witness to a proof-of-concept for a design.
- Can model without parasitics to confirm anomalies.
- Useful in idea or concept value.
- Can provide information for otherwise unavailable information.

Example of Usefulness

- Devise a scheme whereby a pair of center-fed dipoles, stacked vertically, generate an omnidirectional flattened pattern.
- The doughnut pattern is to be squashed so as to send less energy to the moon and more to the horizon.
- What distance needs to exist between the centers of the antennas?

Example of Usefulness

- There exists a
 - Phase difference and
 - Feed-point separation distance
- Such that the doughnut patterns cancel and add that the net pattern is squashed to the horizon.
- Questions
 - What phase difference and
 - What feed-point distance
 - Is required for a squashed pattern?
- Without a witness we cannot be certain that the simulation answer is correct but it is useful information nevertheless.

The J-Pole Components

- The actual antenna
- A Z-transformer
 - Unfold revealing center-fed dipole
 - Z at the center is 50 Ohms
 - Z at the ends is several thousand—High Z

J-pole antenna - Wikipedia

J-pole antenna fed by coaxial cable (*left*) and parallel line (*right*). The right diagram shows the standing waves of voltage (*V*, *red bands*) and current (*I*, *blue bands*) on the elements.

J-Pole Impedance Transformations

- The actual antenna is $\lambda/2$
 - Is end-fed
 - Therefore, is a high-Z input (typically 3 to 10 k Ω
- Z_{xform}
 - low-Z input
 - High-Z output
- End-Fed antennas have a Hi-Z input Z.

J-pole antenna fed by coaxial cable (*left*) and parallel line (*right*). The right diagram shows the standing waves of voltage (*V*, *red bands*) and current (*I*, *blue bands*) on the elements.

J-Pole Component Lengths

- The actual antenna is $\lambda/2$
- Z_{xform} length
 - Is $\lambda/4$
 - Unfold and xformer becomes a half-wave dipole, center fed.

Antenna is Defined as a Set of Wires

- Wires define the antenna
- These have specifications
 - Diameter
 - Composition (molecular structure)
 - Length
- The numerical engine of NEC has requirements regarding the ratio of lengths and wire diameters.

Critical Concept: Wires Have Segments

- An antenna wire
 - may have any length.
 - Is composed of segments
- The length of a segment
 - Has a minimum
 - Has a maximum
- A very long wire may have many segments.
- Each segment has a min/max limitation.

Define the Antenna Specifications

- Resonant frequency: 146 MHz
- Velocity factor: 1.0
 Note: For purposes of the NEC modeling software, we will ignore velocity factor.
 But that is only for now and for simplification purposes because of the nature of the NEC software.
- J-Pole Composition: Ladder Line
- Use AWG #12 Wire
 - Diameter = 0.002052 meters
- Wire lengths shown at right

 Will solve for the segments per wire slides.

w#	End-to-End
VVπ	Needed (m)
w1	0.475769838
w2	0.025667163
w3	0.0238125
w4	0.025667163
w5	1.514362588
Wat	0.0238125

Purpose of *fp_index* Variable

- A crap-shoot knowing where to place the feed point.
- The feed point defined here as a function of fp_index.
- Is the equivalent of sliding the feed point up and down trombone style.
- Facilitates ease of iteration for a solution.

\a,#	End-to-End
W#	Needed (m)
w1	0.475769838
w2	0.025667163
w3	0.0238125
w4	0.025667163
w5	1.514362588
w6	0.0238125

Rule #1: Wire Segment Maximum Length

- The official rule: NEC requires: Segment Lengths $< \lambda/10$
- EZNEC requires Segment Lengths $< \frac{\lambda}{18}$
- All things considered, lets use Segment Lengths $< \lambda/20$
 - For convenience: $SegLen < \frac{c}{20 \ freq}$
 - λ / 20 = 2.053356 m / 20 = 0.1026678 m
 - This applies to all wire segment lengths used anywhere in this design.

Test W₅ for a **Maximum** Length

- W₅ length is 1.5144 meters
- Truth test:
 - is 1.51 m < 0.1026 m → FALSE
- What must be done
 - W₅ must have **AT LEAST** 1.51/0.1026 = 14.7 segments
 - Segments only come in integer values
 - W₅ must have at least 15 segments

W#	End-to-End
VV TT	Needed (m)
w1	0.475769838
w2	0.025667163
w3	0.0238125
w4	0.025667163
w5	1.514362588
w6	0.0238125

Rule #2 a and b: Wire Segment Min Lengths

NEC has two MINIMUM segment length requirements:

```
• \frac{\lambda}{1,000} < Segment Length
```

- λ remains 2.053356 meters
- Min len #1: $\lambda/1,000$ = 0.002053 meters
- Min len #2: 4*Dia of #12 wire = 0.008100 meters
- Segment lengths > the greater of the two.

Wire Segment Minimum Lengths

$$\lambda/_{1,000} = 0.002053m$$

4 Wire Dia = 0.0081m

< 0.0081 Segment Length

- What is the largest number of segments allowed for wire W₅?
- 1.514m/0.0081m = 186
- Resulting requirement for W₅:
 - 15 <= W₅ # Segments <= 186

	w#	End-to-End				
	VV#	Needed (m)				
	w1	0.475769838				
	w2	0.025667163				
4	w3	0.0238125				
To the same of	w4	0.025667163				
	w5	1.514362588				
	w6	0.0238125				
4		0.0200120				

Rule #3: Circ $\rightarrow \frac{circumference}{\lambda}$ \(\lambda \) Unity

- Because circumference embeds radius
 - Max f_o NEC may be used for given a wire size.
- This can be re-defined into more convenient terms.

•
$$f_{o max}(GHZ) \ll \frac{\frac{3e8m}{s}vf}{\pi Diam}$$

- But how much less? Don't matter, no how.
 - #1 AWG wire: fo < 0.82 GHz
 - #30 AWG wire: *fo* < 75 *GHz*

Rule #4: Unequal Segmentation Parallel Wires

- Unequal Segmentation for
 - Parallel wires
 - Within $\lambda/20$ of each other
 - Having an overlap of $\lambda/10$.
- If you get this error, look for a mistake in your topology.

Relational Segment Lengths

• A segment length must not differ by more than 5x the segment length of another wire.

Special Case: Angled Joining of Wires

- Must not allow the center of one wire to enter the radius of another wire—these are corners.
 - Satisfied with: $\frac{Segment\ Length}{Wire\ Diameter} > 4$
- Re-written for convenience:
 - $\frac{Segment\ Length}{4\ Wire\ Diameter} > unity$
- For w1
 - Will be using 5 segments
 - 0.4873m/ (4 * 0.002052m) / 5seg = 11.8 > unity → GOOD

Test Wire Maximum Segment Lengths

- Because all the wires are the same size
 - Max #1: $\lambda/20 = 0.10267$ m
 - Max #2: 4 * dia
 - #12 AWG → Dia = 0.002052 m
 - 4 * Dia = 0.008208m
 - Net Max is the lesser of the two
 - Max Seg Len = 0.008208 m
- Applicability
 - Because λ has one value
 - and there is one wire size
 - Max Seg Len = 0.008208 m

w#	End-to-End
VVπ	Needed (m)
w1	0.475769838
w2	0.025667163
w3	0.0238125
w4	0.025667163
w5	1.514362588
w6	0.0238125

Solve for Maximum Number of Segments

- MIN Segment length = 0.008208 m
- The MAXIMUM number of segments per wire may now be solved for.

•
$$W_1 = 0.475/0.0082 = FLOOR(57.9) = 57$$

•
$$W_2 = W_4 = 0.02567/0.0082 = FLOOR(3.1) = 3$$

•
$$W_3 = W_6 = 0.0238125/0.0082 = FLOOR(2.9) = 2$$

•
$$W_5 = 1.514/0.0082 = FLOOR(184.6)$$
 = 184

4		
w#	End-to-End	
Ψνπ	Needed (m)	Max
w1	0.475769838	57
w2	0.025667163	3
w3	0.0238125	2
w4	0.025667163	3
w5	1.514362588	184
w6	0.0238125	2

Solve for Minimum Number of Segments

- Max Segment length = 0.10266865 m
- The MINIMUM number of segments per wire may now be solved for.
 - $W_1 = 0.475/0.103 = CEILING(4.6)$
 - $W_2 = W_4 = 0.02567/0.103 = CEILING(0.249)$
 - $W_3 = W_6 = 0.0238125/0.103 = CEILING(0.23)$
 - $W_5 = 1.514/0.103 = CEILING(14.7)$

= 5		. 1		
= 3		w#	End-to-End	
= 1	Min	VV 11	Needed (m)	Max
= 15	5	w1	0.475769838	57
1	1	w2	0.025667163	3
	1	w3	0.0238125	2
	1	w4	0.025667163	3
	15	w5	1.514362588	184
	1	w6	0.0238125	2

Arbitrarily Pick Number of Seg Per Wire

- It is an arbitrary decision at this point how many segments to specify per wire.
- Any values within those limits are acceptable.

N I		w#	End-to-End	
Number Used	Min	VV1T	Needed (m)	Max
11	5	w1	0.475769838	57
2	1	w2	0.025667163	3
1	1	w3	0.0238125	2
1	1	w4	0.025667163	3
22	15	w5	1.514362588	184
1	1	w6	0.0238125	2

EZNEC Offers Auto Segment

 A very handy feature to have available.

NEC Wire Table

 A table defines the topology of the antenna.

0, 2.0257m

Wes' Excel Spreadsheet v: 3-19-24 Wesley Cardone, N8QM, for The Chelsea Amateur Radio Club, WD8IEL

Steps to Input to EZNEC

- Define the resonant frequency of the antenna.
- Define the ground options
- Define the wire list

Defining the Wire List

- Type in the wire list
- The format is:

•	• End 1				End2						
•	Χ	Υ	Z	Conn	X	Υ	Z 1	Conn	Dia(mm)	# Segments	
•	0	0.023813	2.02567		0	0.023813	2.051334		2.05232	11	
•	0	0.023813	2		0	0.023813	2.025667		2.05232	2	
•	0	0	2		0	0.023813	2		2.05232	2	
•	0	0	2		0	0	2.025667		2.05232	2	
•	0	0	2.02567		0	0	3.54003	1	2.05232	22	
•	0	0	2.02567		0	0.023813	2.025667		2.05232	1	

Defining the Source List

- Type in the wire list
- The format is:

•	Specified Pos.	End2						
• No	Wire # % From E1	% From E1	Seg	(V, A) P	hase Type			
• 6	50 50	1	1	0	1			
	Sources - (3)			- 🗆	×			
	Source Edit Other							

	Sources										
	No.	Spec	ified Pos.	Actual Pos.		Amplitude	Phase	Туре			
		Wire #	% From E1	% From E1	Seg	(V, A)	(deg.)				
•	1	6	50	50	1	1	0	I			
*											

Plot the SWR

- Not very impressive.
- Resonates at 144 MHz
- Consider the gap.

J-Pole Component Lengths

- The actual antenna is $\lambda/2$
- Z_{xform} length
 - Is $\lambda/4$ but not where you would think.
 - Includes the gap

Wes' Stuff Closer Up

Defining the Wire List

Make two changes to account for the "missing" gap

•	End	1 1			End2	Pa	411	The state of the s	
• X	Υ	Z	Conn	X	Υ	Z	Conn	Dia(mm)	# Segments
• 0	0.023813	2.02567		0	0.0238	2.0501437		2.05232	11
• 0	0.023813	2		0	0.023813	2.025667		2.05232	2
• 0	0	2		0	0.023813	2		2.05232	2
• 0	0	2		0	0	2.025667		2.05232	2
• 0	0	2.02567		0	0	3.528124		2.05232	22
• 0	0	2.02567		0	0.023813	2.025667		2.05232	1

Plot the Revised SWR

- impressive.
- Resonates at 146.3 MHz

What About our Feed Point Entry Point?

- We guessed at a value of 0.05
- It was a good guess but can still be optimized.
- I've tried
 - 0.04 which returns an SWR of 1.5.
 - 0.07 which was but resonating at 148 MHz.
- But don't forget that we have been using a velocity factor of unity.