Modeling the J-Pole Antenna
 A Deep Dive Presentation

Wesley Cardone, N8QM
March 2024

Proposed:

- A J-Pole antenna will be modeled for computer simulation using the NEC antenna simulation engine developed by the Lawrence-Livermore Laboratory in the 1970s.
- We will be using the
- EZNEC and
- This application is particularly useful for presentations and beginners of antenna modeling.
- 4NEC2 implementations of the NEC engine.
- This application is more useful for the skilled NEC user owing to its symbology facilitation.
- Recommend that the viewer have reviewed the earlier"qualitative" presentation.
- The basics of modeling the J-Pole for simulation.
- This will be a deep-dive into the actual modeling.
- An Excel spreadsheet will be presented.
- "Deep Dive" is not intended to mean "for rocket scientists only."
- Nothing beyond what is expected of amateur extra class licensees will be presented.

Questions You Must Consider

- What is a computer antenna model?
- An architecture of wires with stimulus
- What knowledge to you need?
- Success in modeling and simulation can only be of value if you already know most of the answers.
- You understand what the pieces are doing
- Might not understand their workings together
- Why Model Antennas?
- Apply changes to what you already know to be true
- What are must-haves
- Objectives
- What answers are sought?

Why Model the J-Pole Antenna?

- The workings of the J-Pole are fully understood.
- Value-Add
- Little operational value can be gained by simulating a J-Pole antenna.
- Ideal subject matter for learning NEC modeling
- We know what the J-Pole is supposed to be doing
- Does our model reflect that?
- If yes---you are learning.
- If no-what have you missed.

Benefits of Antenna Modeling

- Can serve as a second witness to a proof-of-concept for a design.
- Can model without parasitics to confirm anomalies.
- Useful in idea or concept value.
- Can provide information for otherwise unavailable information.

Example of Usefulness

- Devise a scheme whereby a pair of center-fed dipoles, stacked vertically, generate an omnidirectional flattened pattern.
- The doughnut pattern is to be squashed so as to send less energy to the moon and more to the horizon.
- What distance needs to exist between the centers of the antennas?

Example of Usefulness

- There exists a
- Phase difference and
- Feed-point separation distance
- Such that the doughnut patterns cancel and add that the net pattern is squashed to the horizon.
- Questions
- What phase difference and
- What feed-point distance
- Is required for a squashed pattern?
- Without a witness we cannot be certain that the simulation answer is correct but it is useful information nevertheless.

The J-Pole Components

- The actual antenna
- A Z-transformer
- Unfold revealing center-fed dipole
- Z at the center is 50 Ohms
- Z at the ends is several thousand-High Z

J-pole antenna fed by coaxial cable (left) and parallel line
(right). The right diagram shows the standing waves of voltage (\boldsymbol{V}, red bands) and current (\boldsymbol{I}, blue bands) on the elements.

J-Pole Impedance Transformations

- The actual antenna is $\lambda / 2$
- Is end-fed
- Therefore, is a high-Z input (typically 3 to $10 \mathrm{k} \Omega$
- $\mathrm{Z}_{\mathrm{xform}}$
- low-Z input
- High-Z output
- End-Fed antennas have a Hi-Z input Z.

J-Pole Component Lengths

- The actual antenna is $\lambda / 2$
- $\mathrm{Z}_{\text {xform }}$ length
- Is $\lambda / 4$
- Unfold and xformer becomes a half-wave dipole, center fed.

Antenna is Defined as a Set of Wires

- Wires define the antenna
- These have specifications
- Diameter
- Composition (molecular structure)
- Length

- The numerical engine of NEC has requirements regarding the ratio of lengths and wire diameters.

Critical Concept: Wires Have Segments

- An antenna wire
- may have any length.
- Is composed of segments
- The length of a segment
- Has a minimum
- Has a maximum
- A very long wire may have many segments.
- Each segment has a min/max limitation.

Define the Antenna Specifications

- Resonant frequency: 146 MHz
- Velocity factor: 1.0

Note: For purposes of the NEC modeling software, we will ignore velocity factor. But that is only for now and for simplification purposes because of the nature of the NEC software.

- J-Pole Composition: Ladder Line
- Use AWG \#12 Wire
- Diameter $=0.002052$ meters
- Wire lengths shown at right \rightarrow
 slides.

Purpose of $f p _i n d e x$ Variable

- A crap-shoot knowing where to place the feed point.
- The feed point defined here as a function of fp_index.
- Is the equivalent of sliding the feed point up and down trombone style.
- Facilitates ease of iteration for a solution.

w\#	End-to-End Needed (m)
w1	0.475769838
w2	0.025667163
w3	0.0238125
w4	0.025667163
w5	1.514362588
w6	0.0238125

Rule \#1: Wire Segment Maximum Length

- The official rule: NEC requires: Segment Lengths $<\lambda / 10$
- EZNEC requires Segment Lengths $<\lambda / 18$
- All things considered, lets use Segment Lengths $<\lambda / 20$
- For convenience: $\quad \boldsymbol{S e g L e n}<\frac{\boldsymbol{c}}{\mathbf{2 0} \text { freq }}$
- $\lambda / 20=2.053356 \mathrm{~m} / 20=0.1026678 \mathrm{~m}$
- This applies to all wire segment lengths used anywhere in this design.

Test W_{5} for a Maximum Length

- W_{5} length is 1.5144 meters
- Truth test:
- is $1.51 \mathrm{~m}<0.1026 \mathrm{~m} \rightarrow$ FALSE
- What must be done

w\#	End-to-End Needed (m)
$w 1$	0.475769838
$w 2$	0.025667163
$w 3$	0.0238125
$w 4$	0.025667163
$w 5$	1.514362588
$w 6$	0.0238125

- Segments only come in integer values
- W_{5} must have at least 15 segments

Rule \#2 a and b: Wire Segment Min Lengths

- NEC has two MINIMUM segment length requirements:

- Min len \#1: $\lambda / 1,000=0.002053$ meters
- Min len \#2: 4*Dia of \#12 wire $=0.008100$ meters
- Segment lengths > the greater of the two.

Wire Segment Minimum Lengths

$\lambda / 1,000=0.002053 \mathrm{~m}$	<0.0081 Segment Length
4 Wire Dia $=0.0081 \mathrm{~m}$	

- What is the largest number of segments allowed for wire W_{5} ?
- $1.514 \mathrm{~m} / 0.0081 \mathrm{~m}=186$
- Resulting requirement for W_{5} :
- $15<=W_{5}$ \# Segments <= 186

Rule \#3: Circ $\rightarrow \frac{\text { circumference }}{\lambda} \ll$ Unity

- Because circumference embeds radius
- Max f_{o} NEC may be used for given a wire size.
- This can be re-defined into more convenient terms.
- $f_{o \max (G H z)} \ll^{\frac{3 e 8 m}{s} v f} / \pi$ Diam
- But how much less? Don't matter, no how.
- \#1 AWG wire: fo $<0.82 \mathrm{GHz}$
- \#30 AWG wire: fo $<75 \mathrm{GHz}$

Rule \#4: Unequal Segmentation Parallel Wires

- Unequal Segmentation for
- Parallel wires
- Within $\lambda / 20$ of each other
- Having an overlap of $\lambda / 10$.
- If you get this error, look for a mistake in your topology.

Relational Segment Lengths

- A segment length must not differ by more than $5 x$ the segment length of another wire.

Special Case: Angled Joining of Wires

- Must not allow the center of one wire to enter the radius of another wire-these are corners.
- Satisfied with: $\frac{\text { Segment Length }}{\text { Wire Diameter }}>4$
- Re-written for convenience:
- $\frac{\text { Segment Length }}{4 \text { Wire Diameter }}>$ unity
- For w1
- Will be using 5 segments
- $0.4873 \mathrm{~m} /(4$ * 0.002052 m$) / 5 \mathrm{seg}=11.8 \geqslant$ unity \Rightarrow GOOD

Test Wire Maximum Segment Lengths

- Because all the wires are the same size
- $\operatorname{Max} \# 1: \lambda / 20=0.10267 \mathrm{~m}$
- Max \#2: 4 * dia
- \#12 AWG \rightarrow Dia $=0.002052 \mathrm{~m}$
- 4 * Dia $=0.008208 \mathrm{~m}$
- Net Max is the lesser of the two
- Max Seg Len $=0.008208 \mathrm{~m}$
- Applicability
- Because λ has one value
- and there is one wire size
- Max Seg Len $=0.008208$ m

Solve for Maximum Number of Segments

- MIN Segment length $=0.008208 \mathrm{~m}$
- The MAXIMUM number of segments per wire may now be solved for.
- $\mathrm{W}_{1}=0.475 / 0.0082=\operatorname{FLOOR}(57.9)=57$
- $\mathrm{W}_{2}=\mathrm{W}_{4}=0.02567 / 0.0082=\operatorname{FLOOR}(3.1)=3$
- $\mathrm{W}_{3}=\mathrm{W}_{6}=0.0238125 / 0.0082=\operatorname{FLOOR}(2.9)=2$
- $\mathrm{W}_{5}=1.514 / 0.0082=\operatorname{FLOOR}(184.6)=184$

w\#	End-to-End Needed (m)	Max
w1	0.475769838	57
w2	0.025667163	3
w3	0.0238125	2
w4	0.025667163	3
w5	1.514362588	184
w6	0.0238125	2

Solve for Minimum Number of Segments

- Max Segment length $=0.10266865 \mathrm{~m}$
- The MINIMUM number of segments per wire may now be solved for.
- $\mathrm{W}_{1}=0.475 / 0.103=$ CEILING(4.6)
- $\mathrm{W}_{2}=\mathrm{W}_{4}=0.02567 / 0.103=$ CEILING(0.249)
- $W_{3}=W_{6}=0.0238125 / 0.103=$ CEILING(0.23)
- $W_{5}=1.514 / 0.103=$ CEILING(14.7)
$=5$
$=3$
$=1$
$=15$

Min	w\#	End-to-End Needed (m)	Max
5	w1	0.475769838	57
1	$w 2$	0.025667163	3
1	$w 3$	0.0238125	2
1	$w 4$	0.025667163	3
15	$w 5$	1.514362588	184
1	$w 6$	0.0238125	2

Arbitrarily Pick Number of Seg Per Wire

- It is an arbitrary decision at this point how many segments to specify per wire.
- Any values within those limits are acceptable.

Number Used	Min	W\#	End-to-End Needed (m)	Max
11	5	w1	0.475769838	57
2	1	W2	0.025667163	3
1	1	W3	0.0238125	2
1	1	W4	0.025667163	3
22	15	w5	1.514362588	184
1	1	w6	0.0238125	2

EZNEC Offers Auto Segment

- A very handy feature to have available.

NEC Wire Table

Z
$\begin{array}{ccc}X & Y & Z \\ 0, & \mathrm{~W}_{3} \text { len, } & h t A b v G n d+\mathrm{W}_{1} \text { len }+\mathrm{W}_{1} \text { len }\end{array}$ $0,0.0238 \mathrm{~m}, 2.5014 \mathrm{~m}$

- A table defines the topology of the antenna.

Wes' Excel Spreadsheet

Steps to Input to EZNEC

- Define the resonant frequency of the antenna.
- Define the ground options
- Define the wire list

Ey. Wires - (3)
 Wire Create Edit Other

0 Trancforme
Γ Coord Entry Mode Γ Preserve Connections Γ Show Wire Insulation Γ Show Loss

Wires											
	No.	End 1				End 2				Diameter	Segs
		X (m)	Y (m)	Z (m)	Conn	X (m)	Y (m)	Z (m)	Conn	(mm)	
	1	1	1	1	ZeroLen	1	1	1	ZeroLen	1	1
米											

Defining the Wire List

- Type in the wire list
- The format is:

-	End 1	
-	X	Y
-	Z	
-	0.023813	2.02567
- 0	0.023813	2
- 0	0	2
-	0	0
-	0	0
-	0	0

Defining the Source List

- Type in the wire list
- The format is:
- Specified Pos.

Specified Pos. End2

- No Wire \# \% From E1
- 6
5050
\% From E1

Source Edit Other

Sources								
	No.	Specified Pos.		Actual Pos.		Amplitude	Fhase	Type
		Wire \#	\% FromE1	\% FromE1	Seg	[V.A]	[deg.)	
-	1	6	50	50	1	1	0	1
*								

Plot the SWR

- Not very impressive.
- Resonates at 144 MHz
- Consider the gap.

J-Pole Component Lengths

- The actual antenna is $\lambda / 2$
- $\mathrm{Z}_{\text {xform }}$ length
- Is $\lambda / 4$ but not where you would think.
- Includes the gap

Wes'Stuff Closer Up

Defining the Wire List

- Make two changes to account for the "missing"gap

-	End 1	
-	X	Y

Plot the Revised SWR

- impressive.
- Resonates at 146.3 MHz

What About our Feed Point Entry Point?

- We guessed at a value of 0.05
- It was a good guess but can still be optimized.
- I've tried
- 0.04 which returns an SWR of 1.5.
- 0.07 which was but resonating at 148 MHz .
- But don't forget that we have been using a velocity factor of unity.

