Modeling the J-Pole Antenna A Qualitative Presentation

Wesley Cardone, N8QM

Proposed:

- A J-Pole antenna will be modeled for computer simulation using the NEC antenna simulation engine developed by the LawrenceLivermore Laboratory in the 1970s.
- We will be using the EZNEC implementation of the NEC engine.
- This presentation will be qualitative in nature.
- We will present in 30 minutes or less the basics of modeling the J-Pole for simulation.
- Tomorrow we will do a deep-dive into this doing the actual modeling.
- An Excel spreadsheet will be presented at that time for modeling.
- Please visit the Chelsea Amateur Radio Club website for last-minute scheduling and details.
- It is anticipated that the notes for that session will be put up on the website before the meeting.

Define the Antenna Specifications

- Resonant frequency: 146 MHz
- Velocity factor: 1.0

Note: For purposes of the NEC modeling software, we will ignore velocity factor. But that is only for now and for simplification purposes because of the nature of the NEC software.

- Composition: Ladder Line - X = 450 Ohms
- Antenna input Z:50 Ohms
- Use AWG \#12 Wire
- Diameter $=0.002052$ meters

Antenna is Defined as a Set of Wires

- Wires define the antenna
- These have specifications
- Diameter
- Composition (molecular structure)
- Length

- The numerical engine of NEC has requirements regarding the ratio of lengths and wire diameters.

Critical Concept: Wires Have Segments $\stackrel{\text { ®}}{\circ}^{\circ}$

- A wire
- may have any length.
- Is composed of segments
- The length of a segment
- Has a minimum
- Has a maximum
- A very long wire may have many segments.
- Each segment has a min/max limitation.

Wire Segment Maximum Length

- NEC requires: Segment Lengths $<\lambda / 10$
- For convenience: $\boldsymbol{S e g L e n}<\frac{\boldsymbol{c}}{\mathbf{1 0} \text { freq }}$
- Let freq $(\mathrm{MHz})=146 \mathrm{MHz}$
- $\lambda / 10=1.89 \mathrm{~m} / 10=0.189 \mathrm{~m}=7.44$ " = 7" \& 7/16" max length per segment.
- Example: A wire is to be 22 " in length.
- How many segments needed?
- 22 " / 7.44 " $=2.96$ segments $\rightarrow 3$ segments min required

Wire Segment Minimum Length

- NEC has two MINIMUM segment length requirements:

$<$ Segment Length
- λ remains 2.053356 meters
- Min len \#1: $\lambda / 1,000=0.002053$ meters
- Min len \#2: 4*Dia \#12 wire $=0.008100$ meters
- Segment Lengths must be: >0.0081 meters
- Given: a 22" \#12 AWG wire.
- Can have as few as one (1) segment for this 22"\#12 AWG wire.

Wire Circumference $\boldsymbol{\rightarrow} \frac{\text { circumference }}{\lambda} \ll$ Unity

- Because circumference embeds radius
- Max f_{o} NEC may be used for given a wire size.
- This can be re-defined into more convenient terms.
- $f_{o \max (G H z)}<{ }^{\frac{388 m}{s} v f} / \pi D i a_{m}$
- But how much less? Don't matter, no how.
- \#1 AWG wire: fo $<0.82 \mathrm{GHz}$
- \#30 AWG wire: fo $<75 \mathrm{GHz}$

Define the Antenna

- Resonant frequency: 146 MHz
- fp _indx $=0.05$ (feed point index-a guess for now)
- Velocity factor (vf) $=1.0{ }_{\text {EEsonimestornow }}$
- $\lambda=299.79$ / 146 MHz
- $\lambda / 4$
- $\mathrm{W} 2_{\text {len }}=W 4_{\text {len }}=0.513(0.05)$
- $\mathrm{W} 1_{\text {len }}=0.513(1-0.05)=W 3_{\text {len }}$
- $W 5_{\text {len }}=0.513(3-0.05) / 4$
- $\mathrm{W}_{\text {len }}=15 / 16$ "*2.54/100
$=2.0533561$ meters
$=0.5133390$ meters
$=0.025667 \mathrm{~m}$
$=0.47577 \mathrm{~m}$
$=1.5144 \mathrm{~m}$
$=0.025667 \mathrm{~m}$

Special Case: Angled Joining of Wires

- Must not allow the center of one wire to enter the radius of another wire-these are corners.
- Satisfied with: $\frac{\text { Segment Length }}{\text { Wire Diameter }}>4$
- Re-written for convenience:
- $\frac{\text { Segment Length }}{4 \text { Wire Diameter }}>$ unity
- For w1
- Will be using 5 segments
- $0.4873 \mathrm{~m} /(4$ * 0.002052 m$) / 5 \mathrm{seg}=11.8 \geqslant$ unity \Rightarrow GOOD

This Has Been a Qualitative Presentation

- Tomorrow (March 12, 2024) at 7 PM by video conference we will present a deep-dive into this model.
- "Deep Dive" is not intended to mean "for rocket scientists only."
- Nothing beyond what is expected of amateur extra class licensees will be presented.
- Please visit the Chelsea Amateur Radio Club website for lastminute details on the video conference meeting.

