Modeling the J-Pole Antenna A Qualitative Presentation

Wesley Cardone, N8QM

3/12/2024

Wesley Cardone, N8QM, for The Chelsea Amateur Radio Club, WD8IEL

Proposed:

- A J-Pole antenna will be modeled for computer simulation using the NEC antenna simulation engine developed by the Lawrence-Livermore Laboratory in the 1970s.
- We will be using the EZNEC implementation of the NEC engine.
- This presentation will be qualitative in nature.
 - We will present in 30 minutes or less the basics of modeling the J-Pole for simulation.
 - Tomorrow we will do a deep-dive into this doing the actual modeling.
 - An Excel spreadsheet will be presented at that time for modeling.
 - Please visit the Chelsea Amateur Radio Club website for last-minute scheduling and details.
 - It is anticipated that the notes for that session will be put up on the website before the meeting.

Define the Antenna Specifications

- Resonant frequency: 146 MHz
- Velocity factor: 1.0

Note: For purposes of the NEC modeling software, we will ignore velocity factor. But that is only for now and for simplification purposes because of the nature of the NEC software.

- Composition: Ladder Line X = 450 Ohms
- Antenna input Z:50 Ohms
- Use AWG #12 Wire
 - Diameter = 0.002052 meters

Wesley Cardone, N8QM, for The Chelsea Amateur Radio Club, WD8IEL

 $-fp_index$

w5

w4

fp index

w1

w2

fp_index

w6

w3 361 / 16000 m

– fp_index

Antenna is Defined as a Set of Wires

- Wires define the antenna
- These have specifications
 - Diameter
 - Composition (molecular structure)
 - Length
- The numerical engine of NEC has requirements regarding the ratio of lengths and wire diameters.

Diameter

Wesley Cardone, N8QM, for The Chelsea Amateur Radio Club, WD8IEL

Radius

Critical Concept: Wires Have Segments &

nenx

• A wire

- may have any length.
- Is composed of segments
- The length of a segment
 - Has a minimum
 - Has a maximum
- A very long wire may have many segments.
- Each segment has a min/max limitation.

5005

Wire Segment Maximum Length

- NEC requires: Segment Lengths $< \lambda/_{10}$
 - For convenience: $SegLen < \frac{c}{10 \ freq}$
 - Let freq (MHz) = 146 MHz
 - λ / 10 = 1.89 m / 10 = 0.189 m = 7.44" = 7" & 7/16" max length <u>per segment.</u>
- Example: A wire is to be 22" in length.
- How many segments needed?
 - 22" / 7.44" = 2.96 segments → 3 segments min required

Wire Segment Minimum Length

- NEC has two MINIMUM segment length requirements:
 - λ/1,000
 4 Wire Diamete
 Segment Length
- λ remains 2.053356 meters
- Min len #1: λ/1,000
- Min len #2: 4*Dia #12 wire
- Segment Lengths must be: > 0.0081 meters
- Given: a 22" #12 AWG wire.
 - Can have as few as one (1) segment for this 22" #12 AWG wire.

= 0.002053 meters

= 0.008100 meters

Wire Circumference ->

- Because circumference embeds radius
 - Max f_o NEC may be used for given a wire size.
- This can be re-defined into more convenient terms.
 - $f_{o max}(GHZ) \ll \frac{3e8m}{s} v f /_{\pi Dia_m}$
- But how much less? Don't matter, no how.
 - #1 AWG wire: fo < 0.82 GHz
 - #30 AWG wire: *fo* < 75 *GHz*

Wesley Cardone, N8QM, for The Chelsea Amateur Radio Club, WD8IEL

circumference

λ

~

Unity

circumference

Define the Antenna

- Resonant frequency: 146 MHz
- fp_indx = 0.05 (feed point index—a guess for now)
- Velocity factor (vf) = 1.0 (ignoring for now)
 - λ = 299.79 / 146 MHz
 - λ/4
- $W2_{len} = W4_{len} = 0.513(0.05)$
- W1_{len} = 0.513(1-0.05) = W3_{len}
- W5_{len} = 0.513(3-0.05)/4
- W3_{len} = 15/16"*2.54/100

Special Case: Angled Joining of Wires

- Must not allow the center of one wire to enter the radius of another wire—these are corners.
 - Satisfied with: $\frac{Segment \ Length}{Wire \ Diameter} > 4$
- Re-written for convenience:
 - $\frac{Segment \ Length}{4 \ Wire \ Diameter} > unity$
- For w1
 - Will be using 5 segments
 - 0.4873m/ (4 * 0.002052m) / 5seg = 11.8 > unity → GOOD

This Has Been a Qualitative Presentation

- Tomorrow (March 12, 2024) at 7 PM by video conference we will present a deep-dive into this model.
- "Deep Dive" is not intended to mean "for rocket scientists only."
- Nothing beyond what is expected of amateur extra class licensees will be presented.
- Please visit the <u>Chelsea Amateur Radio Club website</u> for lastminute details on the video conference meeting.