Nature of Reflections

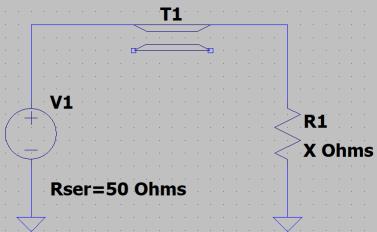
Wesley Cardone, N8QM

March 2025

This Lesson Presents

- Electric signal time travel in free space
- Travel time limitations in media OTHER than free space
- Making those differences simple
- Power transfer with
 - a shorted load
 - an open load
 - a matched load
- Under DC the reasons are very, very basic
- But a DC-transient view reveals something astonishing.

Time Travel

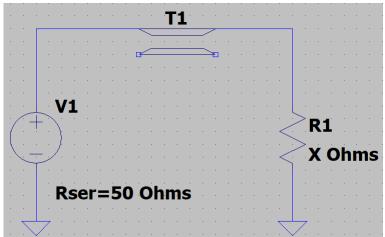

- An electric signal travels (as well as light)
 - In free space
 - at the speed of light 300e6 meters per second
 - In anything else
 - at slightly LESS THAN speed of light in free space
- Examples of anything else
 - Copper
 - Water
 - glass

An Easy Way to Specify How Much Less

- Velocity Factor
- For example, if an electric signal travels
 - In free space at 299,792,458 meters per second
 - And travels at 284,802,835 meters per second in a copper wire
 - The velocity factor (vf) OF THAT WIRE is the ratio of the two—0.95.
- Thus, vf is a parameter found on data sheets for coax and other cables typically used as antenna feedlines.

Maximum Power Transfer

- Maximum power is consumed by a load when the impedance of a system is matched.
- A "system" is the
 - Power source
 - Travel media
 - And load


How do you get max power transferred?

- Consider the variables. With:
 - X much larger than $\rm R_{ser}$ you get
 - a much larger voltage delivered to the load.
 - But LESS current
 - X much LESS than $\mathrm{R}_{\mathrm{ser}}$ you get
 - a much LESS voltage delivered to the load.
 - But much MORE current

											-	г. 4		÷			÷								
									_						_				_						
										~															
									r4	_				_	×⊓										
			V																						
. ,	/			٠.															5	_					
1	. –	Ξ.	1															<	<u> </u>	F	21	L			
).																>						
\mathcal{N}			Ζ.															<			(0	h	m	S
		<u> </u>]						
			R	S	er	'=	:5	50	(Dł	۱r	n	S												
	<u> </u>	Ľ,																<u> </u>	Ľ,	-					
	. \	/ .																. \	/						

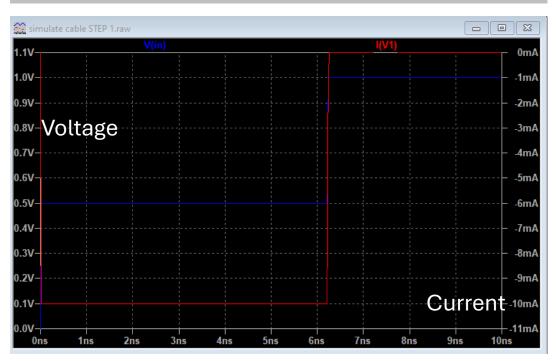
Easy to Understand Example of Max P Xfer

- Ignoring the transmission line, Let V1=1 Volt and X = 50 Ohms
 - $V_{load} = 1Volt \frac{50 \text{ Ohms}}{50 \text{ Ohms} + 50 \text{ Ohms}} = 0.5 \text{ Volt}$
 - $i_{load} = \frac{0.5 \, Volt}{50 \, Ohms} = 0.01 \, Ampere$
 - $Power_{load} = ie = 0.01A * 0.5V = 0.005 VA$ (Watts)
- Let X = 100 Ohms
 - $V_{load} = 1 Volt \frac{100 Ohms}{50 Ohms + 100 Ohms} = 0.6666666 Volt$
 - $i_{load} = \frac{0.666666 \, Volt}{100 \, Ohms} = 0.00666666 \, Ampere$
 - $Power_{load} = 0.00666 \dots A * 0.666 \dots V = 0.004444 \dots VA$
- Let X = 1 Ohms
 - $Power_{load} = ie = 0.000386A * 0.0196V = 0.00038VA$
- Quiz: Which of the three values of X results in a max pwr xfer?

Enter the Transmission Line-RG-58

- <u>Source is Tech-FAQ</u>
 - Vf=65.9%
 - C=28.8 pF/ft, 94.5 pF/m
 - Z₀=53.5 Ohms
 - T_d=1.54 nsec/ft, 5.-52 nsec/m
- Calculated
 - $L = Z_o^{2*}C = 50^{2*}94.5pF = 236 nH/m$
- Expected Latency via vf alone
 - T_d=Len/c*vf=1m/299.79e6 m/sec*0.659=2.20 nSec/meter

Critical Missing Observation!!!!


- Even in DC there are transient voltages owing to parasitics.
- EVERYTHING has parasitics, even lamp cord.
- Consider the earlier example but looking at what was there but we did not notice (or care about).
- Use a voltage pulse starting at zero and a pulse value of 1 Volt.
- A transmission line of 50 Ohms but options for open and shorted.

in		!	T3			• •			• •	• •	• •			ou	I t : :
model TI ine I TRA(I	R=10u	1 = 2	36n (d=9	4 5n		V = 4	i Cal	: hle	l ei		m}	,	- - -	· · · ·
	.param	i cab	leLer	າ_m	=1*	vf_i	g5	B)		^{>} R1
	.param	i vf_i	g58:	=0.6	559	· · ·		· · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· ·	· · ·	\leq	^{>} 50
Pcor=E0	· · · · · ·	· · · ·	· · ·		· · ·	· ·	· · ·	· · · ·	· · · ·	· · · ·	· · · ·	· ·	· ·	• •	•••
PULSE(0 1 0 10p 10p {Ton}	{per})		· · · ·		· · · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· ·	· ·		· · ·
🕂 🕂 .tran 0 10n 0				×	· · ·	· ·		· ·	• •	· ·	· ·	· ·	· · · ·		

Open Option

- Load is open
- But 10 mA flows for 6.2 nSec.
- Voltage at source is only half for those 6.2 nSec
- Then goes to full voltage.
- Why?
 - Because of characteristic impedance—Z₀.
 - $Z_0 = \sqrt{\frac{L}{c}}$
 - EVERYTHING has parasitic elements.

• • • • • • • • • • • • • • • • • • •	· TS	3 ·								•	. o	ut	•
· • <mark>• • • • • • • • • • • • • • • • • •</mark>	\geq	\leq	·	· ·	•	· ·	·	·	·	•	· ·	· .	·
.model TLine LTRA(R=10u	L=23(6n (=94	4.5p	LEN	={c	abl	eLe	en_i	m})	• •	١.	·
param	cable	Len	_m=	:1*vf	[_rg!	58·	·	•	·	•		·	·
()	vf <u>.</u> rg	58=	0.6	59.	•		•	•	·	•		·	•
												1 × 1	
		•										· .	
PULSE(0 1 0 10p 10p {Ton} {per}	<u>и</u> .	_ ب	Ļ .									Ļ.	
	*	- `	· .							•		~ .	

What about a short?

- Load is shorted
- But 10 mA flows but then switches to 20 mA at 6.2 nSec.
- Voltage source is HALF for those 6.2 nSec and THEN zero.
- Why?
 - Because of characteristic Z—Z₀.
 - $Z_0 = \sqrt{\frac{L}{c}}$
 - EVERYTHING has parasitic elements.

•	۰.	•	÷	•	in	•	•	•	•	•	·	• •	•			τз	·	•	•	•	·	•	÷	•	•	•	•	·	OU	ıt
	· ·		÷	÷	·	•	·	·	•	÷	·	• •	•		X		₹	÷	·	•	·	•	·	÷	•	·	•	•	•	•
		·.,		·	÷.,	mo	del	TLi	ine	LT	RA	(R≖	=10	u ·L	⇒2	36	n Ç	=9	4.5	5p	LEN	1={	ca	ble	Le		m}	•	•	•
۰.	7	- `	÷	·	·	•	•	•	•	·	•	• .р	ara	m c	abl	eLe	en	m=	= 1 *	[⊧] vf	_rg	58	•	•	·	•	·	•		•
- {	(+	.)		·				•		•	•	• •P	ara	m. v	f_ı	g5	8=	0.6	559).	•	•	•				•			•
		٣.																												
		·R	se	r=	50									_ :																
		. P	ŲL	SE	(0	1 0	10)p 1	ĻΟp	<u>} (</u>	Tor	<u>}</u> { ر	per	÷5	Ļ		L,	-											Ļ	<u> </u>
	7	7. t	ra	n C	10	Dù (D.								<u> </u>		\sim												.~	1

With Matched Impedances

- Load is matched—50 Ohms
- From time zero no changes.
- Voltage source is HALF at the getgo.
- Why?
 - Hold on to your hats, folks.
 - Because THERE ARE NO REFLECTIONS.

• • • • in • • • • • • • • • • • • T3 • • • • • • • • • • • •	out 🕚
	· · ·
.model TLine LTRA(R=10u L=236n C=94.5p LEN={cableLen_m})	L
<pre>vi vi v</pre>	
()	< 50
. 🍸	
PULSE(0 1 0 10p 10p {Ton} {per})	- $+$ $+$

🚆 simulate cable STEP 1.raw														
550mV		V(ir	ו)				I(V	(1)		0mA				
500mV-										-1mA				
450mV										2mA				
400mV										3mA				
350mV										4mA				
300mV										5mA				
250mV										6mA				
200mV										7mA				
150mV										8mA				
100mV										9mA				
50mV										-10mA 				
Ons	1ns	2ns	3ns	4ns	5ns	6ns	7ns	8ns	9ns	10ns				

An Antenna for a Load

- Let us now suppose that our "load" is our antenna.
- An optimized antenna will have Z = 50 ± j0 Ohms
- Our transmission line will also have Z = 50 ± j0 Ohms
- And lastly, our transmitter Z = 50 ± j0 Ohms
- But suppose the antenna were
 - Z = 67.0 j30.0 Ohms at 146 MHz
 - That defines an SWR = 1.68
 - A little excessive but tolerable
 - What does it do?

Continued Next Month...

• See you next month—April 2025.